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Parallel AMG requires
parallel algorithms for these steps:

● The Setup Phase
— Coarse Grid Selection
— Construction of Prolongation operator,
— Construction of coarse-grid operators by

Galerkin method,

● The Solve Phase
— Residual Calculation
— Relaxation
— Prolongation
— Restriction
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Parallelizing the Solve Phase

● The Solve Phase

— Residual Calculation
– entails Matvec:

— Relaxation
– We use Jacobi rather than Gaus-Seidel
– entails scaled Matvec-like operation

yxAy β+α←
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Parallelizing the Solve Phase, II

● The Solve Phase

— Prolongation
– Requires a simple Matvec, but on a

rectangular matrix.  May not be available in
some common toolkits, but readily built and
easily parallelizable

— Restriction
– Requires a  MatvecT, the product of the

transpose of a rectangular matrix. Not
generally available in toolkits, but is easily
constructed.
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The Parallel Setup phase

● Construction of Prolongation operator,    , requires
“processor boundary” equations (ghost point
information), and can be accomplished using toolkit
functions.
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The Parallel Setup phase

● Construction of coarse-grid operators by Galerkin
method,               , requires two layers of processor
boundary data.
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The Parallel Setup phase, II

● Selection of the coarse-grid points

— The main challenge of parallelizing AMG. The
standard algorithm is inherently serial, requiring
pathlength-two updates after each C-point is
selected before work can continue.

— We have developed a parallel coarsening
algorithm that uses a Luby-Jones-Plassman like
MIS algorithm to select coarse-grid points based
on an “influence measure” that favors points
that influence many other points.
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Useful definitions

● The variable     depends on the variable      if the jth
coefficient in the ith equation is large compared to
the other off-diagonal coefficients in the ith equation.
That is, if

                                                                (assumes M-matrix)

● If j depends on k, then k influences j , which is
denoted graphically by:

                                          j                     k.
●  The set of coarse-grid variables is denoted C.
● The set of coarse-grid variables used to interpolate

the value of the fine-grid variable      is denoted       .
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S, the matrix of
influence and dependence

● Define S to be the adjacency matrix of the graph of
influence associated with the operator, A.

● The nonzero columns in the ith row of S, denoted
form the set of dependencies of the point i.

● The nonzero rows in the ith column of S, denoted
form the set of influences of the point i.
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Standard AMG:
Choosing the Coarse Grid

● Two Criteria

— (C1) For each fine-grid point i, each
should either be in C or should be dependent
on at least one point in        .

— (C2) C should be a maximal subset with the
property that no C-point influences  another
C-point.

● Satisfying both (C1) and (C2) is sometimes
impossible.  We use (C2) as a guide while enforcing
(C1).

Ci

Sj ∈ i:



VEH 11CASC

Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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Standard AMG coarsening:
algorithm is inherently sequential

➨ select C-pt with
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Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

10 8 8 5

11 8 8 5

7 5 5 3



VEH 15CASC

Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

8 5

8 5

5 3



VEH 17CASC

Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5
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Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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10 8 8 5

13 11 11 7



VEH 20CASC

Standard AMG coarsening:
 algorithm is inherently sequential

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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ParAMG Coarsening

● Create a “measure” of each point, consisting of the
number of influences of the point, plus a random
number in [0,1].

● Select a set of points whose measure exceeds that
of all points they influence or depend  on. Set is
independent by construction, may be maximal,
(needn’t be).  This can readily be done in parallel,
since once the random values are distributed, the
only action is read-only!

● Perform ParAMG heuristics (described below) on the
set of points selected above.  Can be done in
distributed fashion, requiring a synchronization at
the end of the step when the set is exhausted.
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ParAMG Coarsening Heuristic 1:
the effect of coarse points

● The values at a C-point is not interpolated, hence
C-points won’t need to interpolate from neighbors
they depend on.  Those neighbors have lessened
“value” as potential C-points themselves.

— For each neighbor, j, that influences c:
–  subtract 1 from measure[ j ];   and
–  remove the edge         from the graphS jc
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ParAMG Heuristic 2: neighbors
dependent on a common C-point

● If k and j both depend on a given C-point, and j
influences k, then the value of j as a coarse point is
lessened, since k can be interpolated from C.

— For each j that C influences: ( i.e.,               )
–  delete
–  for each k that  j influences:

–  if k depends on C:
• subtract 1 from measure[ j ];
• remove edge

S Cj
S Cj ≠ 0

S jk
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ParAMG Coarsening

● Repeat the process on those vertices and edges
remaining in the graph.  A vertex is removed when
all its edges are removed.

● The process continues until all points have either
been selected as a C-point by the independent set
picker or have been removed from the graph by
virtue of measure[ j ] --> 0.

● The union independent sets is the coarse grid.  All
other points form the fine grid.
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Selecting the coarse-grid points
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Selecting the coarse-grid points
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Determine the
“measure” for
each point: the
number of other
points influenced
(arrows pointing
into the point) plus
a random number
between 0 and 1
(not shown).
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Selecting the coarse-grid points

Choose as C-
points an
independent set
of points whose
measures are
greater than
those of all their
neighbors.
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Selecting the coarse-grid points

C-points will not
be interpolated.3
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Selecting the coarse-grid points

C-points will not
be interpolated.

Lower  the
measures of the
points that
influence these
C-points.
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Selecting the coarse-grid points

C-points will not
be interpolated.

Lower  the
measures of the
points that
influence these
C-points.

Remove the
edges showing
this influence
from the graph.
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Selecting the coarse-grid points

F-points influenced
by a common C-point
don’t  interpolate
each other:
Lower the measure
of each point  P,
influenced by C, for
every other point P
influences that also
depends on C
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Selecting the coarse-grid points

F-points influenced
by a common C-point
don’t  interpolate
each other:
Lower the measure
of each point  P,
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every other point P
influences that also
depends on C
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Selecting the coarse-grid points
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Selecting the coarse-grid points
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Selecting the coarse-grid points
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Selecting the coarse-grid points
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Selecting the coarse-grid points
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Selecting the coarse-grid points
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Selecting the coarse-grid points
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Selecting the coarse-grid points

Standard AMG coarsening:
6 C-points selected

PAMG coarsening:
7 C-points selected
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ParAMG start

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.9 5.1

5.9 8.1 8.9 8.9 8.4 8.2 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.9 5.9

5.0 8.8 8.5 8.6 8.7 8.9 5.3

3.2 5.6 5.8 5.6 5.9 5.9 3.0
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ParAMG select 1

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.9 5.1

5.9 8.1 8.9 8.9 8.4 8.2 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.9 5.9
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ParAMG remove and update 1

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures
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ParAMG select 2

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures
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5.9 8.1 3.9 1.4 3.2 2.9
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2.8 5.6 2.9
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ParAMG remove and update 2

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 2.0

5.2 8.0 3.5

2.9 3.1 1.9

1.3 3.8 1.3

1.3 3.4 1.3
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ParAMG select 3

➨ select C-pts with
maximal measure
locally

➨ remove neighbor
edges

➨ update neighbor
measures

3.7 5.3 2.0

5.2 8.0 3.5

2.9 3.1 1.9

1.3 3.8 1.3

1.3 3.4 1.3
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ParAMG final grid

➨ 11 C-points
selected

➨ Standard AMG
selects 9 C-points
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5-pt Laplacian: convergence
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ParAMG results:
convergence factor

9-pt Laplacian: convergence
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ParAMG results:
complexity

5-pt Laplacian: complexity
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Back to AMG: what else can go wrong?
Thin body elasticity!

● Elasticity, 3-d, thin bodies!
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● Slide surfaces, Lagrange multipliers,
force balance constraints:

● S is “generally” positive definite, V can
be zero,           .TUT ≠
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We need a more robust characterization
of smooth error

● Example: consider quadrilateral finite elements on a
stretched 2D Cartesian grid (              )

● Strong dependence is not apparent here
● Iterative weight interpolation will sometimes

compensate for mis-identified strong dependence
● Elasticity problems are still problematic
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 Global measures that relate
interpolation accuracy and eigenmodes

● Fundamental heuristic: for a two grid algorithm, the
interpolation operator must be able to reproduce a mode
up to the same accuracy as the size of the associated
eigenvalue.

● That is, one the following should be small
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Two-level convergence results

● If M is an upper bound for either measure 1 or 2,
then the V(1,0) convergence factor is bounded by

● The V(1,1) convergence factor is the square of above
● A multi-level result for measure 2 can be found in

McCormick, SINUM 1985.
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AMGe uses f.e. stiffness matrices to
characterize smooth error locally

● For each point i, sum the local f.e. stiffness matrices

● We want the following local measures to be small

local measure 1:

local measure 2:

,
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We use the local measures to define
interpolation

● Given a coarse grid, we define interpolation to be the
arg min of (for measure 1)

● Similarly for measure 2

xamnim
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Using local measures to define interp. is
equivalent to fitting local eigenmodes

● Assume the eigen-decomposition:

● Finding the arg min of measures 1 and 2 is
equivalent to solving the following constrained
least-squares problems with p=1/2 and p=1
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Computing interpolation in practice

● For measure 1, partition local matrix by F and C-pts:

● Then interpolation to point i is defined by

● Measure 1 seems to produce better interpolation in
practice than does measure 2
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● 2D plane-stress cantilever beam, fixed on one end.

● Convergence factors: finest grid elements are          ;
grids are coarsened geometrically.

Preliminary results for new AMGe
prolongation are promising

d h AMG prolongation AMGe prolongation
1 1/32 0.60 0.20

1/4 1/8 0.95 0.25
1/8 1/16 0.90 0.26
1/16 1/64 0.92 0.26

hh ×

1

d
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Bounds on local measure 1 (and 2) yield
global convergence bounds

● We would like to use this bound to assess the
quality of interpolation and coarse-grid choice
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Using the local measure to define
“strong dependence”

● Consider interpolating to point i independently from
each of its neighbors:

For each point k connected to point i , compute
value of        assuming k is the only C-point.Mi
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 values for quadrilateral
example (1000:1)
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Target Problems:

● Adaptive, Lagrangian-Eulerian 3d code :
— Radiation-Hydro, manufacturing,  gross deformation
— slide surfaces & thin bodies

● We have found that AMG-preconditioned GMRES
can be used effectively on several typical problems

● We hope to test AMGe ideas out on several test
problems soon
— now able to get stiffness matrices

— will use a modified AMG coarsening heuristic to coarsen

appropriately near boundaries
— look first at a problem without slide surfaces
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Conclusions
● AMG has been shown to be a robust, efficient solver

on a wide variety of problems of real-world interest.
● AMG can be parallelized using a modified Luby-

Jones-Plassman parallel MIS algorithm to develop
the parallel coarse-grid selection.

● Tests show that the parallel algorithm will produce
grids that give acceptable (not optimal) convergence
factors. Future work includes modifying the
coarsening algorithm to improve performance and
ensure scalability.

● Finite element stiffness matrices and local measures
can be used to better characterize smooth error,
select coarse grids, and construct interpolation.
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